Thursday, January 20, 2011
quasi - state
Quasicrystals are structural forms that are ordered but not periodic. They form patterns that fill all the space though they lack translational symmetry. While crystals, according to the classical crystallographic restriction theorem, can possess only 2, 3, 4, and 6-fold rotational symmetries, the Bragg diffraction pattern of quasicrystals shows sharp peaks with other symmetry orders, for instance 5-fold.
Aperiodic tilings were discovered by mathematicians in the early 1960s, but some twenty years later they were found to apply to the study of quasicrystals. The discovery of these aperiodic forms in nature has produced a paradigm shift in the fields of crystallography. Quasicrystals had been investigated and observed earlier but until the 80s they were disregarded in favor of the prevailing views about the atomic structure of matter.
Roughly, an ordering is non-periodic if it lacks translational symmetry, which means that a shifted copy will never match exactly with its original. The more precise mathematical definition is that there is never translational symmetry in more than n – 1 linearly independent directions, where n is the dimension of the space filled; i.e. the three-dimensional tiling displayed in a quasicrystal may have translational symmetry in two dimensions. The ability to diffract comes from the existence of an indefinitely large number of elements with a regular spacing, a property loosely described as long-range order. Experimentally the aperiodicity is revealed in the unusual symmetry of the diffraction pattern, that is, symmetry of orders other than 2, 3, 4, or 6. The first officially reported case of what came to be known as quasicrystals was made by Dan Shechtman and coworkers in 1984. (read more) (the basics)
Subscribe to:
Post Comments (Atom)
1 comment:
amazing the things that run counter to conventional wisdom.
Thanks
Post a Comment